
Motivation
Content-based publish/subscribe is a versatile communication
mechanism for building loosely coupled distributed applications.
In the past, publish/subscribe systems often required an overlay
network of cooperating brokers that inspect the content of a pub-
lished notification on the application layer in order to flexibly
make forwarding decisions. Leveraging OpenFlow-enabled net-
work switches, forwarding decisions can now be flexibly taken
within the network layer significantly reducing latency and jitter.

Publish/Subscribe Lifecycle

Advertising and subscribing. Publisher P1 and subscriber S1
send advertisement a and subscription s describing the noti-
fications to produce and to consume, respectively.

Installing the distribution rules. The SDN controller deter-
mines and installs forwarding rules and tells publishers about
overlapping subscriptions and their Bloom filter encoding.

Notification distribution. (a) Preprocessing (i.e., matching and
encoding) of notification n at P2, (b) forwarding of n, (c) post-
processing (i.e., filtering out false positives) at S1.

Unadvertising and unsubscribing. Subscriber S3 sends un-
subscription u to the controller restarting step 2.

Content-based Forwarding with Bloom Filters

The key idea of our SDN-based publish/subscribe approach is to
label and forward notifications by the help of Bloom filters, which
encode the subscriptions matched by a notification. A Bloom filter
consists of a bit array of m bits, which are initially all set to 0, and
k m hash functions that uniformly map an element to one of
the array positions. Each matching subscription is hashed by the
publisher using all k hash functions and the resulting array posi-
tions are set to 1. The final bit array is embedded into the notifi-
cation‘s IPv6 source and destination address to be inspected by
the network switches. Each switch has an associated flow table
for every switch port that contains an entry for every active

subscription from a client reachable over this port. A flow entry
matches a received packet, if the bits belonging to the associ-
ated subscription are set. In this case, a copy of the packet is
forwarded on the corresponding switch port. Please note that due
to the probabilistic nature of a Bloom filter, a packet may also
falsely be forwarded with a certain probability.

Optimization and Evaluation
Parameters (i.e., number of hash functions k and elements n) can
be tuned to keep the rate of false positives low. An adaptive
scheme splits the set of matching subscriptions and distributes it
over multiple notification copies if the Bloom filter gets over-
loaded. By exploiting similarities in the content-based filter ex-
pressions (e.g., removing identical and/or covered filters or merg-
ing new covers), the number of subscriptions is effectively re-
duced for which forwarding rules must be created. The smaller
rule set both saves switch memory and decreases the probability
of false positives. If the size of the rule set still exceeds the stor-
age capacity of individual switches, flow entries with similar bit
patterns can be merged repeatedly within each flow table. How-
ever, this reduction of forwarding rules comes at the expense of
an increasing number of false positives.

Conclusions
The presented approach to implement content-based publish/
subscribe with OpenFlow combines efficiency and flexibility.
Publishers encode matching subscriptions as Bloom filters in the
IPv6 source and destination address so that the network switch-
es can derive forwarding decisions using standard OpenFlow bit
vector operations only. Furthermore, we developed and eval-
uated strategies to effectively limit the number of falsely delivered
notifications as well as to deal with the switches’ restricted capac-
ity to store forwarding rules.

1 Institut für Informatik | Architektur von Anwendungssystemen | Universität Rostock
Albert-Einstein-Straße 22 | 18059 Rostock | Germany

2 Institut für Angewandte Mikroelektronik und Datentechnik | Rechner in Technischen Systemen | Universität Rostock
Richard-Wagner-Straße 31 | 18119 Rostock-Warnemünde | Germany

Implementing Content-based
Publish/Subscribe with OpenFlow
Helge Parzyjegla1, Christian Wernecke1, Gero Mühl1, Eike Schweissguth2 and Dirk Timmermann2

1

2

3

4

Top left: Sending a constant vs. an adap-
tive number of notification copies; fraction
of false positives and network traffic.

Bottom left: Effectiveness of optimizations;
number of flow entries and fraction of
false positives.

Bottom right: Merging of flow entries after
pruning of identical subscriptions and
covered subscriptions.

